Jak spolu souvisí osvětlení a věkem podmíněná makulární degenerace (VPMD), blue-light hazard efekt (BLH) a fotobiomodulace. Popisuje vědecký komunikátor. (Česká a anglická verze)

Fotobiomodulační efekt je ochranný efekt červených a bližších infračervených vlnových délek, který kompenzuje a bojuje proti škodlivému blue-light hazard efektu (BLH), který může být jedním z faktorů přispívajících k rozvoji onemocnění věkem podmíněná makulární degenerace. Proto je ve spektru zdrojů osvětlení a displejů důležitý balanc mezi modrou a červenou složkou. Také je zásadní budit modré vlnové délky co nejvíc za BLH oblastí, tj. ideálně za 455 nm.

00:00 intro
00:27 makulárna degenerácia
03:10 lipofuscín a blue-light hazard
07:43 fotobiomodulácia (PBM)
10:59 umelé osvetlenie vs. Slnko
14:14 demonštrácia na grafoch
19:37 c(AMD) index
21:11 firmy a nové trendy
22:12 doporučenie ako sa chrániť
23:53 oranžové okuliare nie sú dobré riešenie
24:44 svetelná hygiena a cirkadiánny rytmus
26:11 záver a zhrnutie

Zdroje:

Hlavní diskutovaný graf s pěti křivkami z [1] je dostupný na http://files.cie.co.at/x046_2019/x046…

[1] S. Christoph, “Is light with lack of red spectral components a risk factor for age-related macular degeneration (AMD)?,” in Proceedings of the 29th CIE SESSION, CIE x046:2019, 2019, no. June, p. 10.
[2] M. Marie et al., “Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells,” Cell Death Dis., vol. 9, no. 3, 2018.
[3] International Commission on Illumination (CIE), “CIE S009:2002 IEC 62471 – Photobiological Safety of Lamps and Lamp Systems.” Vienna, p. 98, 2006.
[4] A. Pawlak, M. Różanowska, M. Zareba, L. E. Lamb, J. D. Simon, and T. Sarna, “Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts,” Arch. Biochem. Biophys., vol. 403, no. 1, pp. 59–62, 2002.
[5] T. I. Karu and S. F. Kolyakov, “Exact action spectra for cellular responses relevant to phototherapy,” Photomed. Laser Surg., vol. 23, no. 4, pp. 355–361, 2005.
[6] C. Qu, W. Cao, Y. Fan, and Y. Lin, “Near-infrared light protect the photoreceptor from light-induced damage in rats,” Adv. Exp. Med. Biol., vol. 664, pp. 365–374, 2010.
[7] R. Begum, M. B. Powner, N. Hudson, C. Hogg, and G. Jeffery, “Treatment with 670 nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model,” PLoS One, vol. 8, no. 2, pp. 1–11, 2013.
[8] M. Rosenfield, R. T. Li, and N. T. Kirsch, “A double-blind test of blue-blocking filters on symptoms of digital eye strain,” Work, vol. 65, no. 2, pp. 343–348, 2020.
[9] I. Jaadane et al., “Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020.
[10] X. Ouyang, J. Yang, Z. Hong, Y. Wu, Y. Xie, and G. Wang, “Mechanisms of blue light-induced eye hazard and protective measures: a review,” Biomed. Pharmacother., vol. 130, no. July, p. 110577, 2020.
[11] M. Hennessy and M. R. Hamblin, “Photobiomodulation and the brain: A new paradigm,” J. Opt. (United Kingdom), vol. 19, no. 1, 2017.
[12] P. L. Turner, E. J. W. Van Someren, and M. A. Mainster, “The role of environmental light in sleep and health: Effects of ocular aging and cataract surgery,” Sleep Med. Rev., vol. 14, no. 4, pp. 269–280, 2010.
[13] J. T. Eells et al., “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 6, pp. 3439–3444, 2003.
[14] L. Colombo et al., “Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases,” BMC Ophthalmol., vol. 17, no. 1, pp. 4–9, 2017.
[15] J. Moon et al., “Blue light effect on retinal pigment epithelial cells by display devices,” Integr. Biol. (United Kingdom), vol. 9, no. 5, pp. 436–443, 2017.
[16] B. T. Ivandic and T. Ivandic, “Low-level laser therapy improves vision in patients with age-related macular degeneration,” Photomed. Laser Surg., vol. 26, no. 3, pp. 241–245, 2008.
[17] G. F. Merry, M. R. Munk, R. S. Dotson, M. G. Walker, and R. G. Devenyi, “Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration,” Acta Ophthalmol., vol. 95, no. 4, pp. e270–e277, 2017.
[18] H. Shinhmar et al., “Optically Improved Mitochondrial Function Redeems Aged Human Visual Decline,” Journals Gerontol. – Ser. A Biol. Sci. Med. Sci., vol. 75, no. 9, pp. e49–e52, 2020.
[19] J. A. Chu-Tan et al., “Efficacy of 670 nm Light Therapy to Protect against Photoreceptor Cell Death Is Dependent on the Severity of Damage,” Int. J. Photoenergy, vol. 2016, p. 12, 2016.
[20] R. J. Lucas et al., “Measuring and using light in the melanopsin age,” Trends Neurosci., vol. 37, no. 1, pp. 1–9, 2014.

English version

How does light influence the health of our retinas? In this video, we will discuss age-related macular degeneration (AMD) and its relationship with light, namely blue-light hazard (BLH) and photobiomodulation (PBM), according to current evidence.

Timestamps:

00:00 introduction
01:27 age-related macular degeneration
04:04 waste products: lipofuscin and drusen
06:39 retinal pigment epithelium cells
09:02 A2E and free radicals
13:03 graph and studies: blue-light hazard
16:24 graph and studies: photobiomodulation
20:36 sunlight vs. artificial indoor lighting
23:39 novel full-spectrum LED lights
26:00 AMD prevention, sleep and the circadian rhythm
28:52 conclusion

Sources and bibliography
The main 5-curve graph [1] is availale at http://files.cie.co.at/x046_2019/x046…

[1] S. Christoph, “Is light with lack of red spectral components a risk factor for age-related macular degeneration (AMD)?,” in Proceedings of the 29th CIE SESSION, CIE x046:2019, 2019, no. June, p. 10.
[2] M. Marie et al., “Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells,” Cell Death Dis., vol. 9, no. 3, 2018.
[3] International Commission on Illumination (CIE), “CIE S009:2002 IEC 62471 – Photobiological Safety of Lamps and Lamp Systems.” Vienna, p. 98, 2006.
[4] A. Pawlak, M. Różanowska, M. Zareba, L. E. Lamb, J. D. Simon, and T. Sarna, “Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts,” Arch. Biochem. Biophys., vol. 403, no. 1, pp. 59–62, 2002.
[5] T. I. Karu and S. F. Kolyakov, “Exact action spectra for cellular responses relevant to phototherapy,” Photomed. Laser Surg., vol. 23, no. 4, pp. 355–361, 2005.
[6] C. Qu, W. Cao, Y. Fan, and Y. Lin, “Near-infrared light protect the photoreceptor from light-induced damage in rats,” Adv. Exp. Med. Biol., vol. 664, pp. 365–374, 2010.
[7] R. Begum, M. B. Powner, N. Hudson, C. Hogg, and G. Jeffery, “Treatment with 670 nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model,” PLoS One, vol. 8, no. 2, pp. 1–11, 2013.
[8] M. Rosenfield, R. T. Li, and N. T. Kirsch, “A double-blind test of blue-blocking filters on symptoms of digital eye strain,” Work, vol. 65, no. 2, pp. 343–348, 2020.
[9] I. Jaadane et al., “Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020.
[10] X. Ouyang, J. Yang, Z. Hong, Y. Wu, Y. Xie, and G. Wang, “Mechanisms of blue light-induced eye hazard and protective measures: a review,” Biomed. Pharmacother., vol. 130, no. July, p. 110577, 2020.
[11] M. Hennessy and M. R. Hamblin, “Photobiomodulation and the brain: A new paradigm,” J. Opt. (United Kingdom), vol. 19, no. 1, 2017.
[12] P. L. Turner, E. J. W. Van Someren, and M. A. Mainster, “The role of environmental light in sleep and health: Effects of ocular aging and cataract surgery,” Sleep Med. Rev., vol. 14, no. 4, pp. 269–280, 2010.
[13] J. T. Eells et al., “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 6, pp. 3439–3444, 2003.
[14] L. Colombo et al., “Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases,” BMC Ophthalmol., vol. 17, no. 1, pp. 4–9, 2017.
[15] J. Moon et al., “Blue light effect on retinal pigment epithelial cells by display devices,” Integr. Biol. (United Kingdom), vol. 9, no. 5, pp. 436–443, 2017.
[16] B. T. Ivandic and T. Ivandic, “Low-level laser therapy improves vision in patients with age-related macular degeneration,” Photomed. Laser Surg., vol. 26, no. 3, pp. 241–245, 2008.
[17] G. F. Merry, M. R. Munk, R. S. Dotson, M. G. Walker, and R. G. Devenyi, “Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration,” Acta Ophthalmol., vol. 95, no. 4, pp. e270–e277, 2017.
[18] H. Shinhmar et al., “Optically Improved Mitochondrial Function Redeems Aged Human Visual Decline,” Journals Gerontol. – Ser. A Biol. Sci. Med. Sci., vol. 75, no. 9, pp. e49–e52, 2020.
[19] J. A. Chu-Tan et al., “Efficacy of 670 nm Light Therapy to Protect against Photoreceptor Cell Death Is Dependent on the Severity of Damage,” Int. J. Photoenergy, vol. 2016, p. 12, 2016.
[20] R. J. Lucas et al., “Measuring and using light in the melanopsin age,” Trends Neurosci., vol. 37, no. 1, pp. 1–9, 2014.
[21] J. Wu et al., „Photochemical Damage of the Retina,“ Survey of Ophthalmology. 51, pp. 461–48, 2006.