Jak spolu souvisí osvětlení a věkem podmíněná makulární degenerace (VPMD), blue-light hazard efekt (BLH) a fotobiomodulace. Popisuje vědecký komunikátor. (Česká a anglická verze)
Fotobiomodulační efekt je ochranný efekt červených a bližších infračervených vlnových délek, který kompenzuje a bojuje proti škodlivému blue-light hazard efektu (BLH), který může být jedním z faktorů přispívajících k rozvoji onemocnění věkem podmíněná makulární degenerace. Proto je ve spektru zdrojů osvětlení a displejů důležitý balanc mezi modrou a červenou složkou. Také je zásadní budit modré vlnové délky co nejvíc za BLH oblastí, tj. ideálně za 455 nm.
00:00 intro
00:27 makulárna degenerácia
03:10 lipofuscín a blue-light hazard
07:43 fotobiomodulácia (PBM)
10:59 umelé osvetlenie vs. Slnko
14:14 demonštrácia na grafoch
19:37 c(AMD) index
21:11 firmy a nové trendy
22:12 doporučenie ako sa chrániť
23:53 oranžové okuliare nie sú dobré riešenie
24:44 svetelná hygiena a cirkadiánny rytmus
26:11 záver a zhrnutie
Zdroje:
Hlavní diskutovaný graf s pěti křivkami z [1] je dostupný na http://files.cie.co.at/x046_2019/x046…
[1] S. Christoph, “Is light with lack of red spectral components a risk factor for age-related macular degeneration (AMD)?,” in Proceedings of the 29th CIE SESSION, CIE x046:2019, 2019, no. June, p. 10.
[2] M. Marie et al., “Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells,” Cell Death Dis., vol. 9, no. 3, 2018.
[3] International Commission on Illumination (CIE), “CIE S009:2002 IEC 62471 – Photobiological Safety of Lamps and Lamp Systems.” Vienna, p. 98, 2006.
[4] A. Pawlak, M. Różanowska, M. Zareba, L. E. Lamb, J. D. Simon, and T. Sarna, “Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts,” Arch. Biochem. Biophys., vol. 403, no. 1, pp. 59–62, 2002.
[5] T. I. Karu and S. F. Kolyakov, “Exact action spectra for cellular responses relevant to phototherapy,” Photomed. Laser Surg., vol. 23, no. 4, pp. 355–361, 2005.
[6] C. Qu, W. Cao, Y. Fan, and Y. Lin, “Near-infrared light protect the photoreceptor from light-induced damage in rats,” Adv. Exp. Med. Biol., vol. 664, pp. 365–374, 2010.
[7] R. Begum, M. B. Powner, N. Hudson, C. Hogg, and G. Jeffery, “Treatment with 670 nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model,” PLoS One, vol. 8, no. 2, pp. 1–11, 2013.
[8] M. Rosenfield, R. T. Li, and N. T. Kirsch, “A double-blind test of blue-blocking filters on symptoms of digital eye strain,” Work, vol. 65, no. 2, pp. 343–348, 2020.
[9] I. Jaadane et al., “Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020.
[10] X. Ouyang, J. Yang, Z. Hong, Y. Wu, Y. Xie, and G. Wang, “Mechanisms of blue light-induced eye hazard and protective measures: a review,” Biomed. Pharmacother., vol. 130, no. July, p. 110577, 2020.
[11] M. Hennessy and M. R. Hamblin, “Photobiomodulation and the brain: A new paradigm,” J. Opt. (United Kingdom), vol. 19, no. 1, 2017.
[12] P. L. Turner, E. J. W. Van Someren, and M. A. Mainster, “The role of environmental light in sleep and health: Effects of ocular aging and cataract surgery,” Sleep Med. Rev., vol. 14, no. 4, pp. 269–280, 2010.
[13] J. T. Eells et al., “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 6, pp. 3439–3444, 2003.
[14] L. Colombo et al., “Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases,” BMC Ophthalmol., vol. 17, no. 1, pp. 4–9, 2017.
[15] J. Moon et al., “Blue light effect on retinal pigment epithelial cells by display devices,” Integr. Biol. (United Kingdom), vol. 9, no. 5, pp. 436–443, 2017.
[16] B. T. Ivandic and T. Ivandic, “Low-level laser therapy improves vision in patients with age-related macular degeneration,” Photomed. Laser Surg., vol. 26, no. 3, pp. 241–245, 2008.
[17] G. F. Merry, M. R. Munk, R. S. Dotson, M. G. Walker, and R. G. Devenyi, “Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration,” Acta Ophthalmol., vol. 95, no. 4, pp. e270–e277, 2017.
[18] H. Shinhmar et al., “Optically Improved Mitochondrial Function Redeems Aged Human Visual Decline,” Journals Gerontol. – Ser. A Biol. Sci. Med. Sci., vol. 75, no. 9, pp. e49–e52, 2020.
[19] J. A. Chu-Tan et al., “Efficacy of 670 nm Light Therapy to Protect against Photoreceptor Cell Death Is Dependent on the Severity of Damage,” Int. J. Photoenergy, vol. 2016, p. 12, 2016.
[20] R. J. Lucas et al., “Measuring and using light in the melanopsin age,” Trends Neurosci., vol. 37, no. 1, pp. 1–9, 2014.
English version
Timestamps:
00:00 introduction
01:27 age-related macular degeneration
04:04 waste products: lipofuscin and drusen
06:39 retinal pigment epithelium cells
09:02 A2E and free radicals
13:03 graph and studies: blue-light hazard
16:24 graph and studies: photobiomodulation
20:36 sunlight vs. artificial indoor lighting
23:39 novel full-spectrum LED lights
26:00 AMD prevention, sleep and the circadian rhythm
28:52 conclusion
Sources and bibliography
[1] S. Christoph, “Is light with lack of red spectral components a risk factor for age-related macular degeneration (AMD)?,” in Proceedings of the 29th CIE SESSION, CIE x046:2019, 2019, no. June, p. 10.
[2] M. Marie et al., “Light action spectrum on oxidative stress and mitochondrial damage in A2E-loaded retinal pigment epithelium cells,” Cell Death Dis., vol. 9, no. 3, 2018.
[3] International Commission on Illumination (CIE), “CIE S009:2002 IEC 62471 – Photobiological Safety of Lamps and Lamp Systems.” Vienna, p. 98, 2006.
[4] A. Pawlak, M. Różanowska, M. Zareba, L. E. Lamb, J. D. Simon, and T. Sarna, “Action spectra for the photoconsumption of oxygen by human ocular lipofuscin and lipofuscin extracts,” Arch. Biochem. Biophys., vol. 403, no. 1, pp. 59–62, 2002.
[5] T. I. Karu and S. F. Kolyakov, “Exact action spectra for cellular responses relevant to phototherapy,” Photomed. Laser Surg., vol. 23, no. 4, pp. 355–361, 2005.
[6] C. Qu, W. Cao, Y. Fan, and Y. Lin, “Near-infrared light protect the photoreceptor from light-induced damage in rats,” Adv. Exp. Med. Biol., vol. 664, pp. 365–374, 2010.
[7] R. Begum, M. B. Powner, N. Hudson, C. Hogg, and G. Jeffery, “Treatment with 670 nm Light Up Regulates Cytochrome C Oxidase Expression and Reduces Inflammation in an Age-Related Macular Degeneration Model,” PLoS One, vol. 8, no. 2, pp. 1–11, 2013.
[8] M. Rosenfield, R. T. Li, and N. T. Kirsch, “A double-blind test of blue-blocking filters on symptoms of digital eye strain,” Work, vol. 65, no. 2, pp. 343–348, 2020.
[9] I. Jaadane et al., “Retinal phototoxicity and the evaluation of the blue light hazard of a new solid-state lighting technology,” Sci. Rep., vol. 10, no. 1, pp. 1–13, 2020.
[10] X. Ouyang, J. Yang, Z. Hong, Y. Wu, Y. Xie, and G. Wang, “Mechanisms of blue light-induced eye hazard and protective measures: a review,” Biomed. Pharmacother., vol. 130, no. July, p. 110577, 2020.
[11] M. Hennessy and M. R. Hamblin, “Photobiomodulation and the brain: A new paradigm,” J. Opt. (United Kingdom), vol. 19, no. 1, 2017.
[12] P. L. Turner, E. J. W. Van Someren, and M. A. Mainster, “The role of environmental light in sleep and health: Effects of ocular aging and cataract surgery,” Sleep Med. Rev., vol. 14, no. 4, pp. 269–280, 2010.
[13] J. T. Eells et al., “Therapeutic photobiomodulation for methanol-induced retinal toxicity,” Proc. Natl. Acad. Sci. U. S. A., vol. 100, no. 6, pp. 3439–3444, 2003.
[14] L. Colombo et al., “Visual function improvement using photocromic and selective blue-violet light filtering spectacle lenses in patients affected by retinal diseases,” BMC Ophthalmol., vol. 17, no. 1, pp. 4–9, 2017.
[15] J. Moon et al., “Blue light effect on retinal pigment epithelial cells by display devices,” Integr. Biol. (United Kingdom), vol. 9, no. 5, pp. 436–443, 2017.
[16] B. T. Ivandic and T. Ivandic, “Low-level laser therapy improves vision in patients with age-related macular degeneration,” Photomed. Laser Surg., vol. 26, no. 3, pp. 241–245, 2008.
[17] G. F. Merry, M. R. Munk, R. S. Dotson, M. G. Walker, and R. G. Devenyi, “Photobiomodulation reduces drusen volume and improves visual acuity and contrast sensitivity in dry age-related macular degeneration,” Acta Ophthalmol., vol. 95, no. 4, pp. e270–e277, 2017.
[18] H. Shinhmar et al., “Optically Improved Mitochondrial Function Redeems Aged Human Visual Decline,” Journals Gerontol. – Ser. A Biol. Sci. Med. Sci., vol. 75, no. 9, pp. e49–e52, 2020.
[19] J. A. Chu-Tan et al., “Efficacy of 670 nm Light Therapy to Protect against Photoreceptor Cell Death Is Dependent on the Severity of Damage,” Int. J. Photoenergy, vol. 2016, p. 12, 2016.
[20] R. J. Lucas et al., “Measuring and using light in the melanopsin age,” Trends Neurosci., vol. 37, no. 1, pp. 1–9, 2014.
[21] J. Wu et al., „Photochemical Damage of the Retina,“ Survey of Ophthalmology. 51, pp. 461–48, 2006.